Skip to main content

Calculator





National Mathematics Day (22 December)

In 2012, the Indian government declared 22 December to be National Mathematics Day. This was announced by Prime Minister Manmohan Singh on 26 February 2012 at Madras University, during the inaugural ceremony of the celebrations to mark the 125th anniversary of the birth of the Indian mathematical genius Srinivasan Ramanujan (22 Dec 1887- 26 Apr 1920). On this occasion Singh also announced that 2012 would be celebrated as the National Mathematics Year.

Since then, India's National Mathematics Day is celebrated every 22 December with numerous educational events held at schools and universities throughout the country. In 2017, the day's significance was enhanced by the opening of the Ramanujan Math Park in Kuppam, in Chittoor, Andhra Pradesh.





Srinivasa Ramanujan ( 22 December 1887 – 26 April 1920) was an Indian mathematician who lived during the British Rule in India. Though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems considered to be unsolvable. Ramanujan initially developed his own mathematical research in isolation: "He tried to interest the leading professional mathematicians in his work, but failed for the most part. What he had to show them was too novel, too unfamiliar, and additionally presented in unusual ways; they could not be bothered". Seeking mathematicians who could better understand his work, in 1913 he began a postal partnership with the English mathematician G. H. Hardy at the University of Cambridge, England. Recognizing the extraordinary work sent to him as samples, Hardy arranged travel for Ramanujan to Cambridge. In his notes, Ramanujan had produced groundbreaking new theorems, including some that Hardy stated had "defeated [him and his colleagues] completely", in addition to rediscovering recently proven but highly advanced results.

During his short life, Ramanujan independently compiled nearly 3,900 results (mostly identities and equations). Many were completely novel; his original and highly unconventional results, such as the Ramanujan prime, the Ramanujan theta function, partition formulae and mock theta functions, have opened entire new areas of work and inspired a vast amount of further research. Nearly all his claims have now been proven correct.

The Ramanujan Journal, a peer-reviewed scientific journal, was established to publish work in all areas of mathematics influenced by Ramanujan, and his notebooks – containing summaries of his published and unpublished results – have been analyzed and studied for decades since his death as a source of new mathematical ideas. As late as 2011 and again in 2012, researchers continued to discover that mere comments in his writings about "simple properties" and "similar outputs" for certain findings were themselves profound and subtle number theory results that remained unsuspected until nearly a century after his death.  He became one of the youngest Fellows of the Royal Society and only the second Indian member, and the first Indian to be elected a Fellow of Trinity College, Cambridge. Of his original letters, Hardy stated that a single look was enough to show they could only have been written by a mathematician of the highest calibre, comparing Ramanujan to other mathematical geniuses such as Euler and Jacobi.

In 1919, ill health – now believed to have been hepatic amoebiasis (a complication from episodes of dysentery many years previously) – compelled Ramanujan's return to India, where he died in 1920 at the age of 32. His last letters to Hardy, written January 1920, show that he was still continuing to produce new mathematical ideas and theorems. His "lost notebook", containing discoveries from the last year of his life, caused great excitement among mathematicians when it was rediscovered in 1976.

A deeply religious Hindu,Ramanujan credited his substantial mathematical capacities to divinity, and stated that the mathematical knowledge he displayed was revealed to him by his family goddess. "An equation for me has no meaning," he once said, "unless it expresses a thought of God."


Born22 December 1887
Died26 April 1920 (aged 32)
Residence
NationalityIndian
Education
Known for
AwardsFellow of the Royal Society
Scientific career
FieldsMathematics
InstitutionsTrinity College, Cambridge
ThesisHighly Composite Numbers (1916)
Academic advisors
InfluencesG. S. Carr
InfluencedG. H. Hardy
Signature
Srinivasa Ramanujan signature


Comments

Popular posts from this blog

Objective RD Sharma for IIT JEE

About the Book: R.D Sharma is very famous among IIT-JEE aspirants.Every student refers it for 10+2 level exams like: · IIT-JEE · AIEEE · Medical · Olympiad and other exams Expert Review: Lines of Appreciations (Why should I buy this book?) This book is the one of the best books in Mathematics for beginners. It includes the exercises covering the entire syllabus of Mathematics pertaining to IIT JEE, AIEEE and other state level engineering examination preparation. Although all the topics are covered very well but the topics of Algebra have an edge over others. Permutations and Combinations, Probability, Quadratic equations and Determinants are worth mentioning. It's a one stop book for beginners. It includes illustrative solved examples which help in explaining the concepts better. Room for improvements (Why should I keep away from this book?) Though the book has a good collection of problems but it cannot be said to be s...

Differentiation and Integration of mod x (|x|)

Differentiation and Integration of any function is vice versa. Now see integration and Differentiation of |x|.  Integration of mod x Differentiation of mod x  Here differentiation of mod x is proved by 1st principle. YouTube Link:

sinθ, cosθ, tanθ: Easy way to remember their values for θ = 0°,30°,45°,60° & 90°

Higher Engineering Mathematics by B.S. Grewal

Product details Reading level: 16+ years Paperback: 1238 pages Publisher: Khanna Publishers; Forty Fourth edition (1965) Language: English ISBN-10: 9788193328491 ISBN-13: 978-8193328491 ASIN: 8193328493 Package Dimensions: 27.8 x 21.6 x 5.2 cm Buy:  Higher Engineering Mathematics Paperback – 1965 by B.S. Grewal (Author) Pdf Download: https://drive.google.com/file/d/0B8Nl3U5dzHu0X3gxbzdXcEk4Qk0/view?usp=sharing

Why 1729 number is so special?

1729 is the natural number following 1728 and preceding 1730. It is known as the Hardy-Ramanujan number, after an anecdote of the British mathematician G. H. Hardy when he visited Indian mathematician Srinivasa Ramanujan in hospital. He related their conversation: I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavourable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways." The two different ways are:1729 = 13 + 123 = 93 + 103 The quotation is sometimes expressed using the term "positive cubes", since allowing negative perfect cubes (the cube of a negative integer) gives the smallest solution as 91 (which is a divisor of 1729):91 = 63 + (−5)3 = 43 + 33 Numbers that are the smallest number that can be expressed as ...

Algebraic Product Formulas

Practice Book Mathematics for JEE Main and Advanced by S K Goyal

Cracking JEE Main and Advanced requires systematic practice to develop quick approach for envisioning solutions of the questions faced in the exam. The Most appreciated JEE Problems book for the last 12 years New Pattern JEE for Mathematics by renowned, Mr SK Goyal, will help you acquire Comprehension and Analytical ability. Practice more than 8000 Quality Objective Questions of all types, with step by step solutions in an innovative, orderly derived manner in all formats. The book has been divided in 32 chapters, to cover the entire JEE syllabus sections widely covers all types of objective questions. Buy:  Practice Book Mathematics for JEE Main and Advanced Paperback – 2018 by S K Goyal (Author)

Functions and Their Graphs

Formulas:

Logarithm and its Applications An approach to learn logarithm and its implementation in Mathematics

Logarithm and its Applications An approach to learn logarithm and its implementation in Mathematics